Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
165
всего попыток:
428
Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?
Задачу решили:
91
всего попыток:
240
На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?
Задачу решили:
35
всего попыток:
46
Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и y — нечётные целые числа.
Задачу решили:
55
всего попыток:
164
Расстояния между тремя парами скрещивающихся рёбер треугольной пирамиды равны 4, 5 и 6 соответственно. Найдите наименьший объём пирамиды.
Задачу решили:
54
всего попыток:
795
Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.
Задачу решили:
72
всего попыток:
156
Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)
Задачу решили:
52
всего попыток:
77
На доске написаны два числа: 0 и 1. На первом шаге напишем между ними их сумму и получим: 0 1 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Таким образом, после второго шага получим: 0 1 1 2 1, после третьего — 0 1 1 2 1 3 2 3 1 и т.д. Найдите сумму всех чисел, написанных после n шагов.
(Пожалуйста, не присылайте файлов!)
Задачу решили:
36
всего попыток:
61
Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам: x–2y–xy2=0, y–2z–yz2=0, z–2x–zx2=0, x>y>z. В ответе укажите значение x.
Задачу решили:
236
всего попыток:
403
В разных точках на шесте длиной 1 метр сидят муравьи. В какой-то момент все они одновременно начинают бежать вдоль шеста с одной и той же скоростью 1 метр в минуту (каждый бежит в одном из двух возможных направлений). Муравей, добежавший до конца шеста, спрыгивает с него на землю. А вот если два муравья сталкиваются, то каждый из них мгновенно разворачивается и бежит с той же скоростью, но в противоположном направлении. Через какое максимальное число секунд все муравьи спрыгнут с шеста? (Если Вы считаете, что движение может продолжаться до бесконечности, введите 0.)
Задачу решили:
623
всего попыток:
794
Две белки за два дня съедают два ореха. Сколько орехов съедят шесть белок за шесть дней?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|