Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
58
всего попыток:
66
Найти площадь синего треугольника.
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
45
всего попыток:
66
Отрезок, соединящий вершину треугольника с точкой, делящий противоположную точку в отношении 1:2, назовем тридианой. В треугольнике проведены все тридианы. Найдите отношение площади треугольника к площади шестиугольника, ограниченного тридианами.
Задачу решили:
31
всего попыток:
39
В четырехугольнике ABCD с целочисленными значениями длин сторон минимального периметра углы при вершинах B и D равны по 120 градусов, АВ=ВС, CD неравно DA. Найти косинус наименьшего угла четырехугольника.
Задачу решили:
67
всего попыток:
81
Минутная и часовая стрелки часов совпали. Какой между ними был угол в градусах 2 часа 20 минут назад?
Задачу решили:
57
всего попыток:
70
Найдите величину угла x в градусах.
Задачу решили:
87
всего попыток:
135
Прямоугольник разбит на несколько, для некоторых указаны их периметры. Найти периметр исходного большого прямоугольника.
Задачу решили:
15
всего попыток:
64
Разрежьте равнобедренную трапецию с основаниями 49 и 29 см, боковой стороной 26 см на три подобные между собой трапеции всевозможными способами. Два разрезания не считать различными, если их линии разрезов симметричны относительно оси симметрии трапеции. Ответом задачи есть сумма длин линий разрезов всех возможных способов разрезания, округленная до целого числа сантиметров.
Задачу решили:
33
всего попыток:
36
В треугольник ABC со сторонанми |AB|=5, |BC|=7, |AC|=8 вписана полуокружность с центром на стороне AC, которая касается сторон AB и BC. Найдите квадрат радиуса полуокружности
Задачу решили:
37
всего попыток:
102
Точки пересечения смежных трисектрис углов (трисектрисы - 2 луча, делящие угол на 3 равные части) в равнобедренном прямоугольном треугольнике являются вершинами внутреннего треугольника. Найти отношение площадей большого и маленького треугольников (ответ округлите до ближайшего целого).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|