img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 55
всего попыток: 75
Задача опубликована: 07.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Внутри окружности проведены линии, как на рисунке.

Три линии в круге

Найдите радиус окружности.

Задачу решили: 45
всего попыток: 170
Задача опубликована: 16.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Площадь и периметр треугольника одно и то же минимальное целое число. Найдите это число.

Задачу решили: 30
всего попыток: 37
Задача опубликована: 19.11.18 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В остроугольном равнобедренном треугольнике АВС (АВ=ВС) проведена высота CD. На стороне ВС построен прямоугольный треугольник ВСЕ снаружи треугольника АВС так,что ВЕllAC, угол ВСЕ=90°. Отрезок АЕ пересекает высоту CD в точке F. Отрезок CF 4 раза меньше боковой стороны исходного треугольника. Найти угол в градусах при основании треугольника АВС.

Задачу решили: 44
всего попыток: 60
Задача опубликована: 23.11.18 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике АВС медиана BD, начиная от вершины, разделена двумя точками E и F в отношении 3:5:1. Прямые AE и AF делят площадь треугольника на 6 частей. Найти площадь наибольшей части, если общая площадь составляет 90.

Задачу решили: 35
всего попыток: 42
Задача опубликована: 28.11.18 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Фигура "Вертушка" состоит из квадрата и четырех его половинок.

Вертушка

На рисунке слева приведено разрезание вертушки на пять частей, на рисунке справа показано, как из этих частей сложить квадрат. Найдите в градусах величину острого угла с вершиной в точке А. 

Задачу решили: 65
всего попыток: 93
Задача опубликована: 30.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Найти площадь трапеции.

Трапеция

Задачу решили: 25
всего попыток: 64
Задача опубликована: 03.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.

Задачу решили: 44
всего попыток: 47
Задача опубликована: 05.12.18 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Из вершины А пямоугольника ABCD провели трисектрисы (2 луча,делящие угол А на 3 равные части). Точки K и L пересечения трисектрис соответственно со сторонами ВС и CD, причем KC=LD. Найти отношение периметра прямоугольника к длине одного из отрезков KC или LD.

Задачу решили: 37
всего попыток: 103
Задача опубликована: 12.12.18 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: anrzej

Полный набор пентамино содержит 12 фигурок, каждая из которых состоит из пяти единичных квадратов.

Часы

Сколькими различными способами можно сложить прямоугольник 5х3, используя три пентамино? 

Уточним: при построении прямоугольника фигурки пентамино можно как угодно поворачивать и переворачивать. Решения считаются различными, если их нельзя совместить наложением.

Задачу решили: 47
всего попыток: 80
Задача опубликована: 14.12.18 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько квадратов со стороной 4 можно поместить без наложений в равносторонний треугольник со стороной 13?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.