Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
147
Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)
Задачу решили:
100
всего попыток:
389
Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?
Задачу решили:
164
всего попыток:
347
Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.
Задачу решили:
146
всего попыток:
229
Трое братьев вскапывали огород. После работы их встретил отец.
Задачу решили:
204
всего попыток:
703
Однажды на лестнице я нашёл тетрадь, в которой было написано сто следующих утверждений: 1. «В этой тетради не менее одного неверного утверждения.» 2. «В этой тетради не менее двух неверных утверждений.» 3. «В этой тетради не менее трёх неверных утверждений.» ............................................................... 100. «В этой тетради не менее ста неверных утверждений.» Сколько утверждений в тетради являются верными?
Задачу решили:
282
всего попыток:
429
63 ириски стоят столько рублей, сколько ирисок можно купить на 28 рублей. Сколько ирисок можно купить на 100 рублей?
Задачу решили:
100
всего попыток:
214
На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?
Задачу решили:
128
всего попыток:
297
Рассматриваются все натуральные числа n от 1 до 2010 включительно. Для скольких из них число nn является квадратом целого числа?
Задачу решили:
121
всего попыток:
172
Найдите минимальное значение выражения , где x и y — произвольные действительные числа.
Задачу решили:
99
всего попыток:
123
Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|