Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
49
всего попыток:
54
Вершины трех квадратов ОА1В1С1, ОА2В2С2 и ОА3В3С3 обозначены по часовой стрелке (см. рис). Найдите площадь треугольника В1В2В3, если площадь треугольника А1А2А3 равна 21.
Задачу решили:
27
всего попыток:
36
В треугольнике АВС расположена точка М так,что треугольник ВСМ - равнобедренный. Отношение величин углов АВМ : МВС : МСА = 1:4:3. Центры описанной окружности около треугольника АВС и вписанной окружности в треугольник ВСМ совпадают. Найти угол ВМС в градусах.
Задачу решили:
45
всего попыток:
95
Разрежьте фигуру "Елочка", изображенную на рисунке на наименьшее число частей и сложите из них квадрат. В ответе укажите число этих частей.
Задачу решили:
48
всего попыток:
65
На рисунке A, B, C И D - конциклические точки. SAPD=27, SCPDQ=37, SBPC=12. Найдите SAPB.
Задачу решили:
42
всего попыток:
51
Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.
Задачу решили:
28
всего попыток:
45
На рисунке A, B, C и D - конциклические точки. SAPD= 27, SBPC= 12, |AB| = 10. Найдите наименьшее возможное значение площади треугольника CDP.
Задачу решили:
51
всего попыток:
54
Разность длин двух высот в равнобедренном треугольнике с основанием 10 равна отношению периметра к длине боковой стороны. Найти длину боковой стороны.
Задачу решили:
55
всего попыток:
61
Три окружности единичного радиуса расположены как показано на рисунке (центры на одной прямой, соседние окружности касаются). Из точки O проведена касательная к окружности с центром в точке F. Найдите длину отрезка AB.
Задачу решили:
54
всего попыток:
71
На стороне АВ квадрата ABCD отмечена точка М, которая делит её на отрезки АМ:МВ=1:2. Далее отрезками DM, CM, BD площадь квадрата делится на 5 частей. Площадь наименьшей части равна 4. Найдите площади остальных частей. Ответ введите в виде числа, состоящего из значений площадей всех частей в порядке возрастания (например, если площади частей равны 4, 6, 8, 8 и 10, то нужно ввести 468810).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|