Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
139
всего попыток:
540
А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили:
129
всего попыток:
277
Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?
Задачу решили:
133
всего попыток:
154
Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).
Задачу решили:
180
всего попыток:
231
Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.
Задачу решили:
75
всего попыток:
682
На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?
Задачу решили:
104
всего попыток:
182
В треугольнике ABC с площадью 420 от вершин к противоположным сторонам проведены отрезки AK, BL, CM так, что их концы делят стороны в отношении 2:1 (BK=2·KC, CL=2·LA, AM=2·MB). Найдите площадь треугольника, ограниченного этими отрезками.
Задачу решили:
103
всего попыток:
199
Клетки шахматной доски раскрашены не в два цвета, а в несколько. Расстоянием между двумя клетками называется длина кратчайшего пути обычной шахматной ладьи от одной клетки до другой. (Длины сторон клеток равны единице.) Известно, что любые две клетки, находящиеся на расстоянии 6, — разных цветов. В какое наименьшее число цветов могут быть раскрашены клетки такой доски?
Задачу решили:
87
всего попыток:
212
Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.
(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили:
205
всего попыток:
487
Какое минимальное число выстрелов нужно сделать в игре "морской бой", чтобы наверняка попасть в "крейсер"? (В "морской бой" играют в квадрате 10×10 клеток, "крейсер" — это прямоугольник 1×4 клетки, а одним выстрелом поражается одна клетка.)
Задачу решили:
94
всего попыток:
199
Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|