img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 64
всего попыток: 376
Задача опубликована: 14.10.09 16:35
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На фестивале камерной музыки собрались 30 музыкантов. На каждом концерте некоторые из них выступают, а остальные слушают их из зала. Какое наименьшее число концертов нужно организовать, чтобы каждый музыкант смог послушать из зала всех остальных?

Задачу решили: 45
всего попыток: 75
Задача опубликована: 19.10.09 22:14
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое максимальное число частей могут делить пространство n плоскостей? (Речь идёт о трёхмерном пространстве и двумерных плоскостях.)

Задачу решили: 91
всего попыток: 208
Задача опубликована: 23.10.09 22:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)

Задачу решили: 81
всего попыток: 196
Задача опубликована: 05.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.

Задачу решили: 60
всего попыток: 167
Задача опубликована: 17.11.09 10:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Саша любит заниматься спортом. Каждый день он либо играет в футбол, либо плавает в бассейне. (На то и на другое ему одного дня не хватает.) Сколькими способами Саша может составить своё спортивное расписание на ноябрь, если он не хочет ходить в бассейн три дня подряд?

Задачу решили: 83
всего попыток: 154
Задача опубликована: 24.11.09 10:00
Прислал: bbny img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Из клетчатой бумаги вырезали квадрат 8×8 и все клетки в нём перенумеровали. Сколько имеется способов вырезать из этого квадрата две клетки так, чтобы его оставшуюся часть можно было разрезать на прямоугольники 1x2?

Задачу решили: 62
всего попыток: 172
Задача опубликована: 11.12.09 14:48
Прислал: BaShka img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Партия в волейболе выигрывается командой, которая первой набирает 25 очков с преимуществом минимум в два очка. В случае равного счёта 24-24 игра продолжается до достижения преимущества в 2 очка (26-24, 27-25 и т.д.). Две партии считаются различными, если строки, в которых выписан порядок набора очков командами, не совпадают. Сколько существует различных партий между командами А и Б, заканчивающихся победой команды А со счётом 32:30?

Задачу решили: 135
всего попыток: 292
Задача опубликована: 07.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько существует попарно различных треугольников с целочисленными сторонами и периметром 40?

Задачу решили: 74
всего попыток: 108
Задача опубликована: 04.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ilkash (Илья Денисов)

Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?

Задачу решили: 118
всего попыток: 243
Задача опубликована: 24.09.10 08:00
Прислала: Marishka24 img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Какое минимальное число звёздочек можно так расставить в клетках таблицы 4×4, чтобы после вычёркивания любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда оставалась хотя бы одна звездочка?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.