img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 57
всего попыток: 112
Задача опубликована: 05.01.11 08:00
Прислал: Busy_Beaver img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Марина пришла в казино и решила сыграть в следующую игру. На 100 карточках с обеих сторон написаны (по разу) все натуральные числа от 1 до 200. Карточки выложены на стол так, что видны только числа, написанные сверху. Марина может выбрать несколько карточек и одновременно перевернуть их, а затем сложить все 100 чисел, которые окажутся после этого наверху — полученная сумма и будет её выигрышем. Какую наибольшую сумму Марина может гарантированно выиграть?

Задачу решили: 72
всего попыток: 256
Задача опубликована: 06.01.11 08:00
Прислал: demiurgos img
Источник: по мотивам Всероссийской олимпиады
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?

Задачу решили: 64
всего попыток: 178
Задача опубликована: 08.01.11 10:00
Прислал: COKPAT img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько различных чисел встречается среди чисел [12/n], [22/n], [32/n], ..., [(n−1)2/n], [n2/n] (где [x] — целая часть числа x)? В ответе укажите последнюю цифру при n=20112011.

Задачу решили: 57
всего попыток: 246
Задача опубликована: 09.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 200 одинаковых на вид, вес и ощупь шариков, ровно один из которых радиоактивен. Ещё имеется автомат, в который можно засунуть сколько угодно шариков, бросить 30 рублей и нажать кнопку. Если радиактивности нет, то загорается зелёная лампочка и автомат выдаёт 10 рублей сдачи. Если же обнаруживается радиоактивность, то загорается красная лампочка и никакой сдачи не выдаётся. Какой наименьшей суммой в рублях Вы должны располагать, чтобы гарантированно (т.е. при полном отсутствии везения) найти радиоактивный шарик?

Задачу решили: 86
всего попыток: 151
Задача опубликована: 10.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mangoost (Сергей Савинов)

Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.

Задачу решили: 50
всего попыток: 142
Задача опубликована: 11.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 4 img
баллы: 100

Две треугольные пирамиды центрально симметричны относительно общей вершины, объём каждой пирамиды — 2010. Найдите объём фигуры, состоящей из середин всех отрезков, концы которых принадлежит разным пирамидам.

Задачу решили: 23
всего попыток: 80
Задача опубликована: 12.01.11 08:00
Прислал: volinad img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наименьшее число прямолинейных разрезов нужно сделать, чтобы уложить прямоугольный торт 25 см на 36 см в квадратную коробку 30 см на 30 см? (Одним разрезом можно резать только один кусок торта!) В ответе опишите, как именно следует разрезать торт, но лучше всего просто пришлите рисунок.

Задачу решили: 31
всего попыток: 70
Задача опубликована: 13.01.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Разбиение прямоугольного треугольника со сторонами 390, 520 и 650 его средними линиями на 4 части имеет диаметр 325. (Диаметр разбиения — это наименьшее из всех чисел, каждое из которых больше или равно расстоянию между любыми двумя точками из одной части разбиения.) Найдите минимальный диаметр разбиения этого треугольника на 4 части.

Задачу решили: 171
всего попыток: 205
Задача опубликована: 14.01.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Есть 2010 конфет, пронумерованных от 1 до 2010. В какое наибольшее количество ваз можно положить эти конфеты так, чтобы суммы номеров конфет в каждой из ваз были попарно равны?

Задачу решили: 155
всего попыток: 375
Задача опубликована: 15.01.11 08:00
Прислал: SA img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: casper

Из чёрных и белых кубиков размера 1х1х1 сложили куб размера 3х3х3. Поверхность куба оказалась окрашена в чёрный цвет ровно наполовину. Какое наибольшее число чёрных кубиков могло быть использовано?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.