img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 79
всего попыток: 168
Задача опубликована: 28.03.11 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?

Задачу решили: 75
всего попыток: 127
Задача опубликована: 30.03.11 08:00
Прислала: glorius_May img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).

Задачу решили: 49
всего попыток: 63
Задача опубликована: 01.04.11 08:00
Прислал: Busy_Beaver img
Источник: Международная олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько существует пар целых чисел (m>2, n>2), для каждой из которых существует бесконечно много таких натуральных чисел k, что (km+k−1) делится на (kn+k2−1)?

Задачу решили: 59
всего попыток: 154
Задача опубликована: 04.04.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В компании N друзей. На протяжении нескольких дней, ежедневно, какие-нибудь трое из них ужинали вместе. Притом за это время каждые двое (из N) поужинали вместе ровно по одному разу. Какие остатки может давать N при делении на 6? В ответе введите без пробелов все возможные остатки в порядке возрастания.

Задачу решили: 217
всего попыток: 359
Задача опубликована: 06.04.11 08:00
Прислал: Busy_Beaver img
Источник: Школа №57г.Москвы
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: bbny

Два лыжника шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в горку, где их скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Каким (в метрах) стало расстояние между ними?

 

Задачу решили: 65
всего попыток: 179
Задача опубликована: 08.04.11 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько процентов составляет вероятность того, что среди 5 (случайно выбранных) точек на сфере найдутся 4, лежащие на одной замкнутой полусфере? (Замкнутая полусфера — это полусфера, включающая собственную границу.)

Задачу решили: 106
всего попыток: 127
Задача опубликована: 11.04.11 08:00
Прислала: Karine img
Источник: из зарубежныхолимпиад
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Cколько решений в целых числах имеет уравнение x2+y2+z2=x2y2?

Задачу решили: 223
всего попыток: 333
Задача опубликована: 13.04.11 08:00
Прислал: Misha2007 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Для нумерации страниц книги потребовалось всего 1392 цифры. Сколько страниц в этой книге? (Нумерация начинается с первой страницы.)

Задачу решили: 80
всего попыток: 123
Задача опубликована: 15.04.11 11:00
Прислала: Marishka24 img
Источник: Канадская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

В соревновании, состоящем из N состязаний, участвовали Андрей, Боря и Вася. За первое место в каждом состязании присуждалось x, за второе – y, за третье – z очков, где x>y>z>0 и все они целые. В итоге Андрей набрал 22, а Боря и Вася – по 9 очков. Боря победил в забеге на 100 метров. Найдите N и определите, кто был вторым в прыжках в высоту. В ответе введите без пробела сначала N, а затем номер участника по алфавиту: 1 (Андрей), 2 (Боря) или 3 (Вася).

Задачу решили: 60
всего попыток: 120
Задача опубликована: 18.04.11 08:00
Прислал: volinad img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Числа s, t, u, v удовлетворяют условию: . Найти

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.