img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 7
  
Задачу решили: 67
всего попыток: 123
Задача опубликована: 20.02.12 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в черный цвет. При каком максимальном k можно за несколько таких ходов покрасить все 100 камней в черный цвет?

Задачу решили: 45
всего попыток: 111
Задача опубликована: 29.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).

Задачу решили: 69
всего попыток: 154
Задача опубликована: 02.04.12 08:00
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сколькими способами можно расставить 8 королей на доске 2*16 (2 строки, 16 столбцов) так, чтобы они не угрожали друг другу (короли не должны располагаться рядом, в том числе и по диагонали}?

 

Задачу решили: 38
всего попыток: 377
Задача опубликована: 20.04.12 08:00
Прислал: levvol img
Источник: http://otuzoyun.com
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На рисунке ноль имеет 2 квадратика касающихся квадратиков  следующей цифры – единицы. Единица имеет 3  квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4  квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4  квадратика касающихся квадратиков  цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим:

0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277.

Переставить цифры не переворачивая их так, чтобы получить  максимальную сумму. Ответом является полученная сумма.

Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.

Задачу решили: 93
всего попыток: 374
Задача опубликована: 23.04.12 08:00
Прислал: Anonim img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?

Задачу решили: 21
всего попыток: 106
Задача опубликована: 27.04.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: zmerch

В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?

Задачу решили: 36
всего попыток: 156
Задача опубликована: 13.06.12 08:00
Прислал: levvol img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

На ипподроме  происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые  лошади могут придти к финишу одновременно (голова  в  голову)?  (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).

Задачу решили: 11
всего попыток: 78
Задача опубликована: 25.06.12 08:00
Прислал: katalama img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим

  • 0 - сгиб, при котором правая часть загибается вниз;
  • 1 - сгиб, при котором левая часть загибается вниз;
  • 2 - разрез, при котором правая часть подкладывается под левую;
  • 3 - разрез, при котором левая часть подкладывается под правую.

kata.png

Последовательность сгибов/разрезов назовём "фальцовкой".
В результате фальцовки мы получим "тетрадь".
Если теперь перенумеровать все страницы сверху вниз начиная с нуля, а затем развернуть тетрадь обратно в полоску, то увидим, что вся полоса (сверху и снизу) исписана числами. Последовательность чисел (сначала тех что сверху, затем тех, что снизу) назовем "раскладкой". Например, фальцовке '00' соответствует раскладка '0,7,4,3,2,5,6,1'. Здесь число 0 - находится на нулевом, а 7 на первом месте.

Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'

Задачу решили: 28
всего попыток: 40
Задача опубликована: 29.06.12 08:00
Прислала: allanick img
Вес: 1
сложность: 3 img
баллы: 100

Если бросить пару обычных костей (кубиков, грани которых пронумерованы точками от 1 до 6), то имется один вариант, когда выпадает в сумме 2, два варианта, когда выпадает в сумме 3 и т.д.

Необычные шестигранные кости - это такие кости, у которых:

  • количество точек на каждой грани  у них отлично от стандартного {1,2,3,4,5,6};
  • каждая грань содержит по крайней мере одну точку;
  • количество вариантов получить значение каждой суммы точно такое же, как и для пары обычных (стандартных) костей.

Значения  количества точек для каждой кости представьте в виде неубывающей последовательности чисел, например {1,2,2,3,3,4}, и далее в виде шестизначного числа, 122334.

Найдите все необычные кости и в качестве ответа дайте сумму найденных чисел.

+ 4
+ЗАДАЧА 763. Граф (Д. Карпов)
  
Задачу решили: 11
всего попыток: 72
Задача опубликована: 13.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: ChLD (Анатолий Лакеev)

В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе? 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.