Лента событий:
solomon предложил задачу "Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
36
Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?
Задачу решили:
36
всего попыток:
58
Есть три стержня: A, B и C. На стержень A надеты 8 колец (дисков), наверху самое маленькое, каждое следующее больше предыдущего, а внизу самое большое. Два других стержня пусты. Необходимо перенести все кольца со стержня A на стержень C, пользуясь стержнем B как вспомогательным. В итоге кольца на стержне C должны быть в том же порядке, в котором они исходно находились на стержне A. Брать за один ход несколько колец нельзя. Кроме того, никогда нельзя класть большее кольцо поверх меньшего. Запрещается переносить кольца между стержнями A и C напрямую. За один ход перенести кольцо можно только либо с A на B (или обратно с B на A), либо с B на C (или обратно). Сколько ходов потребуется для переноса башни из 8 колец с A на C?
Задачу решили:
11
всего попыток:
39
Найдите количество решений в целых числах уравнения: Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.
Задачу решили:
24
всего попыток:
59
На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°. Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев. Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.
(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Задачу решили:
14
всего попыток:
41
Вова играл против компьютера в NIM. В какой-то момент он понял принцип работы компьютера! В частности, он понял, что следующая позиция – проигрышная: Позиция П: И тут, заметив, что компьютер играет как-то однобоко – делает выигрывающий ход именно с первой же кучей, с которой это возможно (номера куч остаются всё время неизменными), придумал себе забаву. Один ход человека заключался в нажатии мышью на те спички, которые он удаляет. Например, если он хочет удалить 4 спички из какой-то кучи, то он поочерёдно нажимает на 4 спички в этой куче. Так вот, Вова, зная, что, получив позицию П он проиграет, хочет минимизировать количество своих нажатий с этой позиции до конца игры. Чему равен этот минимум? Его товарищ Вася, будучи в курсе всех этих дел, придумал себе противоположную забаву: как из той же позиции П максимизировать общее количество своих нажатий до конца игры. Чему равен этот максимум? Введите в ответе произведение этих двух чисел – минимум Вовы и максимум Васи.
Задачу решили:
16
всего попыток:
29
На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Задачу решили:
19
всего попыток:
31
На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек. Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола. Сколько вариантов выигрывающего первого хода есть у начинающего?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|