Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
93
Вычеркните из произведения 1!·2!·3!·...·200! один из факториалов, то есть множитель вида k!, так, чтобы произведение оставшихся было квадратом целого числа. В ответе укажите наименьшее значение k.
Задачу решили:
45
всего попыток:
60
Найдите сумму всех шестизначных чисел, являющихся полными квадратами, и у которых числа, представленные первыми тремя цифрами и последними тремя цифрами, отличаютсю по величине не более чем на единицу.
Задачу решили:
28
всего попыток:
53
Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.
Задачу решили:
19
всего попыток:
44
Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p? Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.
Задачу решили:
43
всего попыток:
45
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Найдите сумму чисел в 123-ой строке этой числовой пирамиды.
Задачу решили:
26
всего попыток:
39
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим «многоэтажные ёлочки», каждый этаж которых занимает три строки. Например, на рисунке изображена четырехэтажная елочка. Найдите сумму чисел, находящихся внутри контура 123-этажной ёлочки этой числовой пирамиды.
Задачу решили:
30
всего попыток:
39
Найдите наибольшее натуральное число n<100 не представимое в виде a*b+b*c+c*a , где a, b, c - натуральные числа
Задачу решили:
24
всего попыток:
51
Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна? Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком.
Задачу решили:
37
всего попыток:
52
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?
Задачу решили:
34
всего попыток:
38
Число 169=132=122+52. Но интересно, что 1692 - тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|