Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
39
Чтобы гарантированно извлечь квадратный корень из произведения 1!*2!*3!*...*100! нужно вычеркнуть один из факториалов. Укажите какое число стоит перед знаком этого факториала.
Задачу решили:
26
всего попыток:
28
На доске было написано 5 целых чисел по возрастанию, отделяя запятыми. Сложив их попарно, получили следующие 10 чисел: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15. Запишите в ответе написанные на доске 5 целых чисел одним числом, убрав запятые.
Задачу решили:
28
всего попыток:
30
4 взрослых и 5 детей построили стену за 20 дней, 5 взрослых и 4 детей построили её за 16 дней. За сколько дней эту стену построят 4 взрослых и 3 детей?
Задачу решили:
22
всего попыток:
32
Найти наименьшее количество множителей факториала 2023!, на которых нужно разделить его, чтобы частное оканчивалось на 1 (единицу).
Задачу решили:
26
всего попыток:
31
Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?
Задачу решили:
27
всего попыток:
31
(1!*2!*3!*4!*5!*6!*7!*8!*9!*10!/n)1/2=m. Найдите миниммальное целое число n, такое что m - целое.
Задачу решили:
17
всего попыток:
31
Вася нарезал фигурки из бумаги n квадратиков и m кружочков, написал на каждую из них по одной цифре, кроме цифры ноль. При этом цифры, что бфли на кружочках не встречались на квадратиках, и, соответственно, цифры, что были на квадратиках не встречались на кружочках. Далее он составил из них всевозможные равенства по схеме: "квадратик"*"кружочек"+"квадратик"+"кружочек"=сумма десяти "квадратиков"+"кружочек", при этом были использованы все квадратики и кружочки. Затем он сложил все цифры на всех квадратиках и кружочках и добавил к нему n и m. Какле число получил Вася?
Задачу решили:
18
всего попыток:
27
В двух стаканах находится n и m мл воды, где 0<n<m и n+m≤200. Разрешена такая операция: количество воды в стакане можно удвоить, переливая из другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить один стакан. Найдите число пар целых чисел n и m, для которых цель может быть достигнута.
Задачу решили:
24
всего попыток:
29
2 преподавателя принимают зачет, проверяя практические задания и знание теории у каждого из студентов. У 1-го на это уходит соответственно 5 и 7 минут, а у 2-го 3 и 4 минуты. За какое минимальное время в минутах они сумеют опросить 25 студентов?
Задачу решили:
23
всего попыток:
28
По кругу записаны 268 целых чисел таким образом, что сумма любых 20 последовательных из них равна 75. Числа 3, 4 и 9 записаны на позициях с номерами 17, 83 и 144 соответственно. Какое число записано на позиции 210?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|