Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
94
всего попыток:
145
В стране лжецов и рыцарей (рыцари всегда говорят правду, лжецы всегда лгут) десяти людям выдали различные числа от 1 до 10. Потом каждого спросили: «Делится ли ваше число на 2?». Утвердительный ответ дали 3 человека. На вопрос «Делится ли ваше число на 4?» утвердительный ответ дали 6 человек. На вопрос «Делится ли ваше число на 5?» утвердительно ответили 2 человека. Найти произведение чисел, которое получили лжецы.
Задачу решили:
68
всего попыток:
91
Решить уравнение sqrt(1+{2x})=[x2]+2[x]+3 [x] - наибольшее целое число, которое не превышает х. {x}=x-[x] В ответе указать произведение всех возможных x.
Задачу решили:
71
всего попыток:
199
Какова вероятность того, что два случайных натуральных числа являются взаимно простыми, т.е. их наибольший общий делитель равен 1. (Ответ представить в виде округленного до целого значения числа процентов).
Задачу решили:
61
всего попыток:
105
Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел. Сколько существует не зелёных чисел между 10000 и 100000 включительно?
Задачу решили:
44
всего попыток:
58
Назовем натуральное число тормозом, если в его десятичной записи найдутся две одинаковые цифры рядом. Найдите наибольшее натуральное число, которое нельзя представить как сумму двух тормозов.
Задачу решили:
57
всего попыток:
92
Известно, что для трех различных натуральных чисел их сумма, а также суммы каждых двух являются квадратами целых чисел. Найдите минимальное произведение этих чисел.
Задачу решили:
123
всего попыток:
397
Найдите минимальное время в секундах, за которое можно поджарить 7 котлет, если на сковороде умещается 6 котлет, и с каждой стороны котлету нужно жарить ровно 5 минут.
Задачу решили:
59
всего попыток:
75
Последовательности (an) и (bn) заданы условиями an+3 = an+2+2an+1+an при n ? 0, a0 = 1, a1 = 2, a2 = 3; bn+3 = bn+2+2bn+1+bn при n ? 0, b0 = 3, b1 = 2, b2 = 1. Сколько существует чисел, встречающихся в обеих последовательностях?
Задачу решили:
32
всего попыток:
250
При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?
Задачу решили:
39
всего попыток:
75
Если в мешке находится по 3 шара черного, белого и красного цвета, как известно, вероятность вытащить два шара, например, красного цвета в этом случае равна Pк=3/9 ·2/8=1/12, а вероятность выташить наугад два шара любого одинакового цвета P=1/4. В нашем мешке находится некоторое количество x=n·m шаров: n различных цветов, а шаров каждого цвета ровно m штук. Нетрудно посчитать вероятность P1 выташить два шара любого одинакового цвета для этого случая. Когда в мешок добавили 52 шара нового цвета, которого в мешке не было оказалось, что вероятность P2 (для нового количества шаров и цветов) вытащить два шара одинакового цвета не изменилась, и осталось той же, что была до добавления шаров нового цвета. То есть P1=P2. Сколько всего x шаров могло находиться в таком мешке? (до добавления 52 шаров). Если вариантов xi несколько, в ответе укажите сумму всех вариантов. Необходимо учитывать разумные ограничения, что m>1 и n>1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|