Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
101
всего попыток:
128
Найдите минимум x8+x4+x2+y8+y4+y2 при условии x+y=1.
Задачу решили:
24
всего попыток:
69
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?
Задачу решили:
63
всего попыток:
89
Найдите сумму всех натуральных p таких, что число 4x2 + p — простое при всех x = 0, 1, …, p-1.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
54
всего попыток:
69
На слет приехало 9876 ребят из разных школ. Каждый выходит погулять по лагерю. Кого он встретит первым? Встреча с любым из участников слета равновероятна. Мальчиков приехало больше, чем девочек. Известно, что вероятности встретить первым МАЛЬЧИКУ-МАЛЬЧИКА, МАЛЬЧИКУ-ДЕВОЧКУ, ДЕВОЧКЕ-ДЕВОЧКУ и ДЕВОЧКЕ-МАЛЬЧИКА можно расположить (не обязательно в таком порядке) так, чтобы они образовывали арифметическую прогрессию. Сколько мальчиков приехало на слет? Ввести сумму всех возможных значений.
Задачу решили:
40
всего попыток:
48
Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.
Задачу решили:
39
всего попыток:
52
Сколько существует 1 <= n <= 2013 таких, что существует перестановка a1, a2, ..., an чисел 1, 2, ..., n в которой ни для каких индексов i < j < k не выполняется равенство ak=(ai+aj)/2?
Задачу решили:
70
всего попыток:
122
120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.
Задачу решили:
56
всего попыток:
70
Найдите сумму всех натуральных чисел n = p1p2…pk, у которых все простые множители p1, p2, …, pk различны и число (p1+1)(p2+1)…(pk+1) делится на n.
Задачу решили:
37
всего попыток:
67
На доске написано 100 единиц. За один ход разрешается стереть любое из чисел и одновременно написать два новых вдвое меньших числа. При каком наибольшем натуральном k можно гарантировать, что в наборе в любой момент времени найдётся k равных чисел?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|