img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 40
Задача опубликована: 21.06.13 14:36
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Сколько существует натуральных n, 3<=n<=2013, таких, что найдётся множество различных натуральных чисел {a(1),a(2), ..., a(n)}, для любой перестановки {b(1),b(2), ..., b(n)} которых ни для каких индексов i<j<k не выполняется равенство b(k)=(b(i)+b(j))/2?

Задачу решили: 52
всего попыток: 78
Задача опубликована: 24.06.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bull (Mike Bulatov)

Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).

Задачу решили: 27
всего попыток: 144
Задача опубликована: 26.06.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.

Задачу решили: 34
всего попыток: 103
Задача опубликована: 01.07.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Рассмотрим поочередно всевозможные упорядоченные пары подмножеств данного 2013-элементного множества. Для каждой пары запишем число элементов в пересечении этих подмножеств. Какое число будет написано больше всего раз, когда будут рассмотрены все пары подмножеств?

Задачу решили: 52
всего попыток: 76
Задача опубликована: 03.07.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из бесконечной шахматной доски по границам клеток вырезана связная фигура (ладья может пройти из любой клетки в любую другую, не покидая доску, передвигаясь каждый раз на одну клетку). В вырезанной фигуре оказалось 2013 черных клеток. Каково максимальное возможное количество белых клеток в этой фигуре?

Задачу решили: 36
всего попыток: 60
Задача опубликована: 05.07.13 09:18
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 4 img
баллы: 100

Дана вписанная n-угольная пирамида SA1A2…An. Сфера ? касается всех её боковых ребер SAi, а также касается плоскости основания в точке K. При каком минимальном n точка K обязательно является центром окружности, описанной около основания?

Задачу решили: 49
всего попыток: 66
Задача опубликована: 08.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

2013 окружностей на плоскости проведены так, что любые две из
них пересекаются в двух точках, но никакие три окружности не пересекаются в одной точке. На сколько частей делят плоскость эти окружности?

Задачу решили: 50
всего попыток: 63
Задача опубликована: 10.07.13 08:00
Прислал: PashaAC img
Источник: Алфутова Н.Б., Устинов А.В. Алгебра и теория ...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Имеется 2000 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?

Задачу решили: 92
всего попыток: 109
Задача опубликована: 12.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Найдите коэффициент при x у многочлена
(x−a)(x−b)(x−c). . .(x−z).

Задачу решили: 23
всего попыток: 64
Задача опубликована: 15.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100

Двум математикам сообщили по натуральному числу. Они знают, что эти числа отличаются на единицу и меньше 2013. Математики по очереди могут  задавать друг другу вопрос: «Знаешь ли ты мое число?» Какое минимальное количество вопросов гарантирует, что рано или поздно кто-то из них ответит «да»? Математики, разумеется, гениальны и всегда говорят правду.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.