Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
155
У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует способов разложить подарки по мешкам?
Задачу решили:
48
всего попыток:
77
Рассмотрим вещественные числа: t > 0 x = (1 + 1/t)t y = (1 + 1/t)t+1 Чему равна точная нижняя граница множества значений выражения xy ? Округлите ответ с точностью 2-х знаков после запятой.
Задачу решили:
52
всего попыток:
85
Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что 0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5 Результат округлить до двух знаков после запятой.
Задачу решили:
33
всего попыток:
189
Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита, третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона. Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?
Задачу решили:
46
всего попыток:
97
Найти максимальную длину такой последовательности натуральных чисел N(i), что N(i) <= 2013 для любого i, N(i) = | N(i-1) - N(i-2) | для i>2
Задачу решили:
79
всего попыток:
88
Дан треугольник ABC со сторонами |AB|=13; |AC|=21, |BC|=16. На сторонах AB и AC построены равносторонние треугольники ABM и ACN, как это показано на рисунке. Вычислить расстояние между точками M и N.
Задачу решили:
39
всего попыток:
111
Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других. Найти максимальное N.
Задачу решили:
30
всего попыток:
70
Из двухсот попарно различных отрезков выбирают по три и составляют прямоугольные треугольники. Каждый отрезок может участвовать в составлении нескольких треугольников. Какое максимальное количество треугольников можно составить из таких отрезков?
Задачу решили:
35
всего попыток:
68
Клетки бесконечной вправо клетчатой полоски последовательно занумерованы числами
Задачу решили:
90
всего попыток:
118
Расшифруйте запись РЕШИ + ЕСЛИ = СИЛЕН. Одинаковым буквам соответствуют одинаковые цифры, а разным - разные. В ответе укажите минимальное значение для слова "СИЛЕН".
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|