img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 291
всего попыток: 684
Задача опубликована: 10.04.09 22:38
Прислал: demiurgos img
Вес: 1
сложность: 5 img
баллы: 100
Темы: алгоритмыimg

В тюрьму поместили 20 узников. Надзиратель сказал им:

«Я дам вам вечер поговорить друг с другом, а утром построю всех в колонну, надену каждому на голову красный, жёлтый или зелёный колпак, а потом спрошу каждого в указанном вами порядке, каков цвет надетого на него колпака. Сколько будет правильных ответов, стольких из вас я отпущу на свободу. Остальных скормлю крокодилам. Кого конкретно — решит жребий.

Каждый узник будет слышать все ответы, но сможет увидеть колпаки всех тех и только тех, кто стоит впереди в колонне. Отвечать нужно обязательно, причём только "красный", "жёлтый" или "зелёный", и сразу — пауза перед вопросом будет достаточной для размышлений. Таковы условия, если замечу жульничество — скормлю крокодилам всех!»

Какому максимальному числу счастливчиков узники смогут гарантировать освобождение?

Задачу решили: 62
всего попыток: 484
Задача опубликована: 10.04.09 22:37
Прислал: demiurgos img
Источник: Сообщено А.Гориновым
Вес: 5
сложность: 5 img
баллы: 100

В тюрьму поместили 6 узников.  Надзиратель сказал им:

«Я дам вам сегодня поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Завтра я вас по очереди отведу в комнату, где стоят 6 закрытых ящиков, в которые я положу разные номера от 1 до 6 (в каждый ящик по номеру), и разрешу открыть 3 любые ящика в произвольном порядке. Каждый из вас должен открыть ящик с номером своей очереди, а какой именно номер лежит в ящике вы увидите, как только его откроете. Если каждому из вас удастся открыть ящик с нужным номером, то я всех выпущу на свободу. А если хоть кто-то потерпит неудачу — скормлю всех крокодилам. Не волнуйтесь, я великодушен — перед приходом следующего узника я буду просто закрывать все ящики и не буду ни переставлять их, ни перекладывать номера. Я даже могу всех вас сегодня отвести в эту комнату и разрешить пометить ящики! А номера в них я положу потом.»

Какова максимальная вероятность освобождения узников при их правильной стратегии?

Задачу решили: 138
всего попыток: 1031
Задача опубликована: 12.04.09 09:55
Прислал: demiurgos img
Источник: Сообщено А.Г.Беляевым
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Вам нужно узнать задуманное число от 1 до 2000. Можно задавать вопросы, на которые тот, кто задумал число, отвечает либо «да», либо «нет». Какое минимальное число вопросов нужно задать, чтобы достоверно определить задуманное число, если отвечающий может и солгать, но не более одного раза?

Задачу решили: 171
всего попыток: 639
Задача опубликована: 26.04.09 15:18
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

Саша выставляет на пустую шахматную доску ладьи: первую — куда захочет, а каждую следующую ставит так, чтобы она побила нечетное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 559
всего попыток: 1600
Задача опубликована: 12.05.09 14:28
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: NikitaKozlov77... (Никита Козлов)

В спешке не пропустить начало нового сериала, семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама — за 2, сынишка — за 5, а бабушка — за 10 минут. У них есть один фонарик, а мост выдерживает только двоих. За сколько минут все они смогут его перейти при лучшей организации своего движения?

Условия для особо придирчивых: Если переходят двое, то они идут с меньшей из скоростей. Идти по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Бросать фонарик нельзя.

Задачу решили: 195
всего попыток: 548
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg

Вам нужно попасть в тайную комнату. У входа в неё стоит диск (на картинке синий) с четырьмя отверстиями (на картинке жёлтыми), расположенными в вершинах квадрата.

Тайная комната

Внутри каждого отверстия спрятан переключатель, имеющий 2 положения: от центра диска (на картинке белое) и к его центру (на картинке чёрное). Разрешается засунуть руки в какие-либо 2 отверстия, пощупать, как стоят переключатели, и переключить один из них или оба. (Ничего не переключать нельзя!) После этого диск приходит в быстрое вращение, так что после его остановки уже нельзя установить, в какие именно отверстия Вы засовывали руки в прошлый раз. Дверь в комнату открывается, если во время вращения диска все переключатели стоят одинаково (все к центру или все от центра). Какое наименьшее число раз нужно засунуть руки в отверстия, чтобы гарантированно попасть в тайную комнату при полном отсутствии везения? Учтите, что исходные положения переключателей неизвестны — они могут стоять вразнобой...

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 159
всего попыток: 602
Задача опубликована: 23.05.09 21:01
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: levvol

У Вас есть два одинаковых стеклянных шарика. Вы бросаете их — можно по одному — с разных этажей 36-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить оба шарика. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.