Лента событий:
MikeNik
добавил комментарий к задаче
"Целочисленные точки на эллипсах - 3"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
30
Найдите количество различных (неконгруэнтных) фигур, каждую из которых можно сложить следующими двумя способами:
Задачу решили:
8
всего попыток:
53
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта считается только один раз.
Задачу решили:
5
всего попыток:
15
Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным. Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения. Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты. [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
Задачу решили:
12
всего попыток:
39
Какую центрально-симметричную фигуру можно сложить из трёх произвольных различных пентамино наибольшим количеством способов? Введите в ответе это количество.
Задачу решили:
9
всего попыток:
40
Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.
Задачу решили:
8
всего попыток:
66
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура считается два раза.
Задачу решили:
12
всего попыток:
68
Известная головоломка «Змейка Рубика» содержит 24 треугольных призмы. Соседние призмы шарнирно соединены боковыми квадратными гранями и могут поворачиваться на угол кратный 90°. Благодаря этому можно поворачивать не только отдельно взятую призму, но и блок, состоящий из нескольких призм змейки. За сколько поворотов на 180° из фигуры «Собака», сложенную из змейки, можно получить фигуру «Параллелепипед», изображенные на рисунке?
Задачу решили:
13
всего попыток:
19
Перед вами часть обычной шахматной доски и четыре коня на ней - 2 белых и 2 черных. За какое наименьшее число ходов можно обменять их местами:
Задачу решили:
7
всего попыток:
18
За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?
Задачу решили:
9
всего попыток:
15
За какое минимальное количество ходов можно из фигуры А змейки Рубика: получить фигуру Б? Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|