Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
72
Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?
Задачу решили:
109
всего попыток:
280
На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)
Задачу решили:
23
всего попыток:
28
В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)
Задачу решили:
56
всего попыток:
263
Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.
Задачу решили:
92
всего попыток:
420
Длины двух высот треугольника равны 12 и 19. Сколько различных целых значений может принимать длина третьей высоты?
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Задачу решили:
91
всего попыток:
170
Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
77
всего попыток:
186
В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|