img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 72
Задача опубликована: 31.01.10 23:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?

Задачу решили: 26
всего попыток: 42
Задача опубликована: 07.02.10 00:11
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?

Задачу решили: 74
всего попыток: 343
Задача опубликована: 15.02.10 10:59
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Деревянный куб с ребром 10 см требуется оклеить в один слой цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно.

Задачу решили: 109
всего попыток: 280
Задача опубликована: 20.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)

Задачу решили: 77
всего попыток: 149
Задача опубликована: 25.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В круге радиуса 10 см на расстоянии 5 см от его центра отмечается точка. Через неё проводятся две перпендикулярные прямые, одна из которых проходит через центр круга. Затем обе прямые поворачиваются на 30° относительно отмеченной точки против часовой стрелки. При этом хорды, лежащие на прямых, заметают часть круга, показанную на рисунке. Сколько см2 составляет её площадь? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 23
всего попыток: 28
Задача опубликована: 08.03.10 08:00
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)

Задачу решили: 56
всего попыток: 263
Задача опубликована: 10.03.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.

Задачу решили: 64
всего попыток: 251
Задача опубликована: 15.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все квадраты? (Т.е. в периметре каждого квадрата произвольного размера от 1×1 до 8×8 не должно хватать хотя бы одной спички.)

Задачу решили: 48
всего попыток: 174
Задача опубликована: 17.03.10 08:00
Прислал: demiurgos img
Источник: М.Гарднер "Нескучная математика"
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все прямоугольники? (Т.е. в периметре каждого прямоугольника произвольного размера не должно хватать хотя бы одной спички.)

Задачу решили: 50
всего попыток: 164
Задача опубликована: 26.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Деревянный куб с ребром 10 см требуется полностью оклеить цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно. (Бумагу можно клеить в несколько слоёв, сгибать где угодно, но сгибы должны быть прямыми.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.