Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
273
всего попыток:
477
Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)
Задачу решили:
132
всего попыток:
1048
На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?
Задачу решили:
136
всего попыток:
384
Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.
Задачу решили:
163
всего попыток:
214
Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)
Задачу решили:
198
всего попыток:
360
На какое максимальное число частей могут делить пространство сфера и поверхность куба?
Задачу решили:
161
всего попыток:
335
Есть 10 упаковок по 100 одинаковых монет в каждой. Есть несколько упаковок с фальшивыми монетами, вес каждой из которых на 0,1 грамма меньше, чем настоящей. Имеются весы, измеряющие вес с точностью до 0,1 грамма. За какое минимальное число взвешиваний можно выявить все упаковки с фальшивыми монетами? (Веса настоящих монеты известны. В каждой упаковке либо все монеты фальшивые, либо все настоящие. Упаковки можно вскрывать.)
Задачу решили:
99
всего попыток:
325
Кузнечик сидит внутри закрытой коробки размером 20×20×20 см. Он может прыгать ровно на 30 см в любом направлении. За какое наименьшее число прыжков кузнечик сможет добраться из одного угла коробки до самого дальнего от него другого угла?
Задачу решили:
88
всего попыток:
441
На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)
Задачу решили:
91
всего попыток:
208
Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)
Задачу решили:
43
всего попыток:
55
Абажур лампы сконструирован, чтобы освещать октант (трёхгранный угол с прямыми плоскими углами). Лампа расположена в центре кубической комнаты. Можно ли её абажур повернуть так, чтобы она не освещала ни одной вершины комнаты?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|