Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
226
всего попыток:
562
– А у тебя дети есть? – Три дочери. – Сколько им лет? – Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже. – Этой информации мне недостаточно... – А если сложить, то получится сегодняшнее число. Поразмыслив: – И этой информации мне недостаточно... – Средняя похожа на меня. – Вот теперь я знаю ответ на свой вопрос. Сколько лет средней дочери?
Задачу решили:
132
всего попыток:
440
Обычные автобусы ходят по кольцевому маршруту с интервалом 8 минут и проезжают один круг за 2 часа. А экспрессы ходят с интервалом 15 минут, но идут они быстрее и проезжают один круг за 1 час. Сколько встречных экспрессов увидит водитель обычного автобуса за время своего движения по всему маршруту? (Имеется в виду число встреч, а не разных автобусов.)
Задачу решили:
205
всего попыток:
487
Какое минимальное число выстрелов нужно сделать в игре "морской бой", чтобы наверняка попасть в "крейсер"? (В "морской бой" играют в квадрате 10×10 клеток, "крейсер" — это прямоугольник 1×4 клетки, а одним выстрелом поражается одна клетка.)
Задачу решили:
111
всего попыток:
499
На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.)
Задачу решили:
196
всего попыток:
292
На доске выписаны два числа 22009 и 52009 (в десятичной записи). Сколько всего цифр на доске?
Задачу решили:
79
всего попыток:
206
На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
88
всего попыток:
441
На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)
Задачу решили:
161
всего попыток:
191
Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|