Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
107
всего попыток:
144
Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?
Задачу решили:
58
всего попыток:
79
На ледяном поле лежат три шайбы. Хоккеисту разрешается бросить любую из шайб так, чтобы она пролетела между двумя другими. Могут ли шайбы оказаться на своих первоначальных местах после 111 бросков хоккеиста? (После броска шайба летит по прямой. И до, и после броска шайбы лежат в вершинах треугольника.)
Задачу решили:
165
всего попыток:
428
Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?
Задачу решили:
91
всего попыток:
240
На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?
Задачу решили:
66
всего попыток:
72
Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.
Задачу решили:
49
всего попыток:
143
На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
123
всего попыток:
168
Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.
Задачу решили:
48
всего попыток:
70
Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|