img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 126
  
Задачу решили: 563
всего попыток: 2177
Задача опубликована: 04.03.09 17:44
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

12 биллиардных шаров, между которыми одинаковые промежутки, движутся по одной прямой с одной и той же скоростью в одном и том же направлении, а навстречу им по той же прямой с той же скоростью движутся 15 таких же шаров с такими же промежутками между ними.

Сколько столкновений произойдет в этой системе? (Столкновения считать абсолютно упругими - потерь механической энергии нет.)

+ 71
+ЗАДАЧА 20. Гангстеры (Н.Б.Васильев)
  
Задачу решили: 410
всего попыток: 1554
Задача опубликована: 14.03.09 20:26
Прислал: demiurgos img
Источник: "Квант", 1991
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

50 гангстеров стреляют друг в друга одновременно. Каждый стреляет в ближайшего к нему гангстера (или в одного из ближайших, если несколько человек находятся на равном расстоянии от него) и убивает его наповал. Найдите наименьшее возможное количество убитых. (Гангстеры — это различные точки на плоскости.)

Задачу решили: 194
всего попыток: 660
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?

+ 27
+ЗАДАЧА 45. Коробочка (Н.Б.Васильев)
  
Задачу решили: 115
всего попыток: 372
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)

Задачу решили: 171
всего попыток: 572
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?

Задачу решили: 140
всего попыток: 412
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?

+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 270
всего попыток: 432
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: По мотивам французской задачи XVII века
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: uchilka725 (Оксана Урусова)

С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?

(Предлагалась на "Первом математическом")
Задачу решили: 161
всего попыток: 647
Задача опубликована: 27.04.09 22:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.