img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 346
Задача опубликована: 07.04.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.

Задачу решили: 70
всего попыток: 278
Задача опубликована: 28.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?

Задачу решили: 103
всего попыток: 222
Задача опубликована: 03.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.

Задачу решили: 71
всего попыток: 209
Задача опубликована: 17.05.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?

Задачу решили: 152
всего попыток: 383
Задача опубликована: 26.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Решите уравнение . В ответе укажите количество его целых решений.

Задачу решили: 90
всего попыток: 242
Задача опубликована: 31.05.10 00:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Сад имеет форму треугольника со сторонами 130, 140 и 150 м. Сумма трёх расстояний от домика садовника до каждой из сторон сада составляет S м. Найдите наименьшее значение S.

Задачу решили: 76
всего попыток: 213
Задача опубликована: 16.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.

Задачу решили: 69
всего попыток: 128
Задача опубликована: 23.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.

Задачу решили: 100
всего попыток: 214
Задача опубликована: 09.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?

Задачу решили: 121
всего попыток: 172
Задача опубликована: 14.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Найдите минимальное значение выражения , где x и y — произвольные действительные числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.