img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 64
всего попыток: 376
Задача опубликована: 14.10.09 16:35
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На фестивале камерной музыки собрались 30 музыкантов. На каждом концерте некоторые из них выступают, а остальные слушают их из зала. Какое наименьшее число концертов нужно организовать, чтобы каждый музыкант смог послушать из зала всех остальных?

Задачу решили: 134
всего попыток: 222
Задача опубликована: 17.10.09 23:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти наименьшее значение r, при котором справедливо утверждение: любая замкнутая плоская ломаная длины 60 лежит в круге радиуса r.

Задачу решили: 45
всего попыток: 75
Задача опубликована: 19.10.09 22:14
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое максимальное число частей могут делить пространство n плоскостей? (Речь идёт о трёхмерном пространстве и двумерных плоскостях.)

Задачу решили: 155
всего попыток: 364
Задача опубликована: 21.10.09 22:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)

Задачу решили: 80
всего попыток: 150
Задача опубликована: 01.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).

Задачу решили: 81
всего попыток: 196
Задача опубликована: 05.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.

Задачу решили: 44
всего попыток: 237
Задача опубликована: 07.11.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.

Задачу решили: 139
всего попыток: 164
Задача опубликована: 09.11.09 12:08
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.

Задачу решили: 98
всего попыток: 201
Задача опубликована: 11.11.09 21:11
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Последовательность определяется условиями: x1=2009; x2=2010; xn+1=xn−1−1/xn при n>1. Найдите n, при котором xn=0.

Задачу решили: 60
всего попыток: 167
Задача опубликована: 17.11.09 10:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Саша любит заниматься спортом. Каждый день он либо играет в футбол, либо плавает в бассейне. (На то и на другое ему одного дня не хватает.) Сколькими способами Саша может составить своё спортивное расписание на ноябрь, если он не хочет ходить в бассейн три дня подряд?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.