img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 56
всего попыток: 263
Задача опубликована: 10.03.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.

Задачу решили: 64
всего попыток: 251
Задача опубликована: 15.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все квадраты? (Т.е. в периметре каждого квадрата произвольного размера от 1×1 до 8×8 не должно хватать хотя бы одной спички.)

Задачу решили: 48
всего попыток: 174
Задача опубликована: 17.03.10 08:00
Прислал: demiurgos img
Источник: М.Гарднер "Нескучная математика"
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все прямоугольники? (Т.е. в периметре каждого прямоугольника произвольного размера не должно хватать хотя бы одной спички.)

Задачу решили: 50
всего попыток: 164
Задача опубликована: 26.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Деревянный куб с ребром 10 см требуется полностью оклеить цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно. (Бумагу можно клеить в несколько слоёв, сгибать где угодно, но сгибы должны быть прямыми.)

Задачу решили: 92
всего попыток: 420
Задача опубликована: 29.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Длины двух высот треугольника равны 12 и 19. Сколько различных целых значений может принимать длина третьей высоты?

Задачу решили: 74
всего попыток: 396
Задача опубликована: 02.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Длины трёх сторон четырёхугольника равны 25, 33 и 39. Найдите длину четвёртой стороны, при которой площадь четырёхугольника максимальна.

Задачу решили: 70
всего попыток: 278
Задача опубликована: 28.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?

Задачу решили: 103
всего попыток: 222
Задача опубликована: 03.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.

Задачу решили: 90
всего попыток: 242
Задача опубликована: 31.05.10 00:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Сад имеет форму треугольника со сторонами 130, 140 и 150 м. Сумма трёх расстояний от домика садовника до каждой из сторон сада составляет S м. Найдите наименьшее значение S.

Задачу решили: 76
всего попыток: 213
Задача опубликована: 16.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.