Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
38
всего попыток:
124
Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.
Задачу решили:
126
всего попыток:
337
У Вас есть 5 камешков, массы любых двух из которых различны, и чашечные весы без гирь. За какое наименьшее число взвешиваний Вам удастся гарантированно расположить камешки по возрастанию массы?
Задачу решили:
51
всего попыток:
72
Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?
Задачу решили:
26
всего попыток:
42
Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?
Задачу решили:
141
всего попыток:
237
На девяти жетонах написаны различные цифры от 1 до 9 (по одной цифре на каждом жетоне). Двое игроков берут по очереди по одному жетону. Выигрывает тот, у кого первого среди взятых им жетонов окажутся три, сумма цифр на которых равна 15. Кто выиграет, если соперник не будет поддаваться? (Если выиграет первый игрок — введите 1, если второй — введите 2, если будет ничья — введите 0.)
Задачу решили:
74
всего попыток:
343
Деревянный куб с ребром 10 см требуется оклеить в один слой цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно.
Задачу решили:
109
всего попыток:
280
На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)
Задачу решили:
77
всего попыток:
149
В круге радиуса 10 см на расстоянии 5 см от его центра отмечается точка. Через неё проводятся две перпендикулярные прямые, одна из которых проходит через центр круга. Затем обе прямые поворачиваются на 30° относительно отмеченной точки против часовой стрелки. При этом хорды, лежащие на прямых, заметают часть круга, показанную на рисунке. Сколько см2 составляет её площадь? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
23
всего попыток:
28
В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|