img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 264
всего попыток: 502
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

+ 52
+ЗАДАЧА 53. Хитрая улитка I (Н.Н.Константинов)
  
Задачу решили: 202
всего попыток: 752
Задача опубликована: 12.04.09 10:03
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Улитка ползет вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое максимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 201
всего попыток: 1035
Задача опубликована: 12.04.09 10:07
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

На доске выписаны подряд целые числа от 0 до 1024 — всего 1025 чисел. Двое играют в такую игру. Сначала первый стирает 512 чисел, потом второй стирает 256 чисел, потом первый 128, потом второй 64 и т.д. На десятом ходу второй стирает одно число, после чего первый выплачивает ему разницу между двумя оставшимися числами. Какую сумму он получит при наилучшей стратегии обоих игроков?

+ 37
+ЗАДАЧА 66. Хитрая улитка II (Н.Н.Константинов)
  
Задачу решили: 164
всего попыток: 717
Задача опубликована: 23.04.09 09:56
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 226
всего попыток: 562
Задача опубликована: 21.08.09 16:29
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

– А у тебя дети есть?

– Три дочери.

– Сколько им лет?

– Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже.

– Этой информации мне недостаточно...

– А если сложить, то получится сегодняшнее число.

Поразмыслив:

– И этой информации мне недостаточно...

– Средняя похожа на меня.

– Вот теперь я знаю ответ на свой вопрос.

Сколько лет средней дочери?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.