Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
173
всего попыток:
583
Сколько имеется 20-значных чисел с нечётным количеством нулей?
Задачу решили:
1785
всего попыток:
4194
Улитка за 6 минут залезает с постоянной скоростью вверх по столбику на 30 см, а следующие 4 минуты она отдыхает и сползает под собственной тяжестью на 15 см. Высота столбика 1 метр, а наверху лежит конфета. Через сколько минут улитка её достанет?
Задачу решили:
277
всего попыток:
1082
У куба 4 большие диагонали. Сколько их различных перестановок осуществляются вращениями куба?
Задачу решили:
256
всего попыток:
940
Сколькими способами можно раскрасить грани одинаковых кубиков шестью красками (каждая грань одного цвета, а все грани разных цветов) так, чтобы никакие два из получившихся раскрашенных кубиков не были одинаковыми, т.е. не переходили один в другой ни при каких вращениях?
Задачу решили:
1538
всего попыток:
2055
В Южной Америке есть круглое озеро, в центре которого каждый год появляется цветок Виктории Регии (стебель поднимается со дна, а лепестки лежат на воде, как у кувшинки). Каждые сутки площадь цветка увеличивается вдвое, и через 30 дней он, наконец, покрывает все озеро, лепестки осыпаются, семена опускаются на дно. А вот через сколько дней площадь цветка составляет половину площади озера?
Задачу решили:
655
всего попыток:
2445
В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?
Задачу решили:
1469
всего попыток:
2235
Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?
Задачу решили:
108
всего попыток:
505
В рамках новой программы исследования околоземного пространства её руководители хотят запусить три спутника, которые будут летать на одной и той же высоте, делая один оборот вокруг Земли за 15 часов. Спутники нужно вывести на их орбиты так, чтобы в течение нескольких часов пути спутников не пересекались, т.е. чтобы никакие два спутника не побывали за это время в одной и той же точке околоземного пространства. Какого наибольшего целого числа часов можно добиться, правильно выбрав орбиты спутников? С математической точки зрения речь идёт о непересекающихся дугах больших окружностей сферы (большая окружность — это пересечение сферы с плоскостью, проходящей через её центр). Например, если спутников только два, а не три, то ответ на вопрос задачи — 14. Для этого их надо запустить так, чтобы один пролетал над Северным полюсом в тот момент, когда другой пролетает над Южным. И через полчаса после их одновременного прохода полюсов у нас заведомо будет 14 часов.
Задачу решили:
116
всего попыток:
395
На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|