Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
129
всего попыток:
1028
В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов? (В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)
Задачу решили:
164
всего попыток:
717
Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый. Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)
Задачу решили:
240
всего попыток:
333
Найдите минимальное натуральное число, которое увеличивается в два раза после перестановки его последней цифры в начало числа. (Все остальные цифры сдвигаются при этом вправо.)
(Предлагалась на "Первом математическом")
Задачу решили:
950
всего попыток:
4846
На книжной полке стоит трёхтомник Пушкина. Страницы каждого тома имеют вместе толщину 3 см, а каждая обложка — 2 мм. Червь прогрыз нору от первой страницы первого тома до последней страницы последнего тома. Какова длина норы? (Ответ дайте в миллиметрах.)
Задачу решили:
255
всего попыток:
569
В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?
Задачу решили:
242
всего попыток:
672
Найти остаток от деления на 7 числа
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
84
всего попыток:
547
Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?
Задачу решили:
161
всего попыток:
594
Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.) Если Вы считаете, что нельзя, то введите 0.
Задачу решили:
144
всего попыток:
195
Найти среднее арифметическое всех натуральных чисел, десятичная запись которых состоит из 4-х четвёрок, 6-ти шестёрок и 9-ти девяток, записанных в любом порядке. (Например, 4699644466669999999.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|