img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 109
всего попыток: 136
Задача опубликована: 27.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Может ли число n4+4 быть простым, если n — целое и n>1?

Задачу решили: 121
всего попыток: 263
Задача опубликована: 01.12.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Какое минимальное число машин, грузоподъёмностью 1,5 тонны каждая, нужно заказать для перевозки нескольких ящиков общим весом 13,5 тонн, если известно, что вес каждого из них не превосходит 350 кг? (Все машины делают только по одному рейсу. Заказанных машин должно хватить независимо от общего количества ящиков, которое заранее неизвестно.)

Задачу решили: 145
всего попыток: 199
Задача опубликована: 09.12.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.

Задачу решили: 35
всего попыток: 46
Задача опубликована: 24.12.09 23:56
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и yнечётные целые числа.

Задачу решили: 36
всего попыток: 61
Задача опубликована: 03.01.10 23:31
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам:

x–2yxy2=0, y–2zyz2=0, z–2xzx2=0, x>y>z.

В ответе укажите значение x.

Задачу решили: 66
всего попыток: 72
Задача опубликована: 08.01.10 21:54
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 123
всего попыток: 168
Задача опубликована: 20.01.10 22:56
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xyz (Анна Андреева)

Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.

Задачу решили: 59
всего попыток: 357
Задача опубликована: 22.01.10 23:29
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.

Задачу решили: 48
всего попыток: 70
Задача опубликована: 25.01.10 16:03
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.