Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
147
всего попыток:
205
Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.
Задачу решили:
139
всего попыток:
540
А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили:
89
всего попыток:
280
На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?
Задачу решили:
52
всего попыток:
187
Перед двумя игроками 5 кучек из спичек: в первой — 7, во второй — 10, в третьей — 18, в четвёртой — 19 и в пятой — 24 спички. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из одной или двух кучек по своему выбору — например, можно взять только одну спичку, а можно и все спички из двух кучек, но вообще не брать спичек или брать спички из трёх разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из каких кучек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите общее количество взятых спичек.
(Эта игра очень похожа на "Игру в спички II"; единственное отличие — там разрешалось брать спички только из одной кучки, а здесь можно и из двух.)
Задачу решили:
226
всего попыток:
562
– А у тебя дети есть? – Три дочери. – Сколько им лет? – Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже. – Этой информации мне недостаточно... – А если сложить, то получится сегодняшнее число. Поразмыслив: – И этой информации мне недостаточно... – Средняя похожа на меня. – Вот теперь я знаю ответ на свой вопрос. Сколько лет средней дочери?
Задачу решили:
495
всего попыток:
1202
Один рыбак поймал 3 рыбы, а второй — 5. Когда они сварили из них уху, к ним подошёл знакомый грибник. Уха была съедена, грибник ушёл, а когда рыбаки стали собираться домой, оказалось, что грибник в благодарность за уху оставил им 8 грибов. Как рыбакам следует поделить грибы? (Рыбы одинаковые, грибы одинаковые, ухи все съели поровну.) В ответе укажите число грибов, который должен взять рыбак, поймавший 5 рыб.
Задачу решили:
414
всего попыток:
858
Какое минимальное число раз нужно сломать шоколадку, изображённую на рисунке, так, чтобы каждый кусок состоял из двух маленьких плиток или одной большой? (Ломать сразу два куска нельзя!)
Задачу решили:
132
всего попыток:
440
Обычные автобусы ходят по кольцевому маршруту с интервалом 8 минут и проезжают один круг за 2 часа. А экспрессы ходят с интервалом 15 минут, но идут они быстрее и проезжают один круг за 1 час. Сколько встречных экспрессов увидит водитель обычного автобуса за время своего движения по всему маршруту? (Имеется в виду число встреч, а не разных автобусов.)
Задачу решили:
83
всего попыток:
465
Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите. Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?
(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили:
51
всего попыток:
131
В парке оборудовано n остановок для детских паровозиков. У каждого паровозика свой маршрут, состоящий из нескольких (необязательно всех) остановок. От каждой остановки до любой другой можно доехать без пересадки, но только на одном паровозике. С каждого паровозика можно пересесть на любой другой, доехав до нужной остановки. Имеется паровозик, чей маршрут состоит ровно из трёх остановок. Найдите максимально возможное значение n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|