Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
339
всего попыток:
593
За столом сидят девочки и мальчики, а на блюде перед ними — 31 булочка. Не все ребята знакомы. Сначала каждая девочка берёт с блюда и раздаёт по булочке каждому незнакомому мальчику, затем каждый мальчик берёт с блюда и раздаёт по булочке каждой знакомой девочке, и на блюде остаётся только 1 булочка. Девочек — 6. А сколько мальчиков?
(Задача моего школьного учителя математики.)
Задачу решили:
47
всего попыток:
101
В натуральном числе поменяли местами некоторые цифры, стоящие в четных позициях, не тронув цифры в нечетных позициях. Пусть C - сумма цифр разности исходного и полученного чисел и 0<=C<=40. Укажите сумму всех возможных значений C.
Задачу решили:
118
всего попыток:
283
30 школьников выстроили в строй друг за другом. Никакие 2 девочки не стоят через нечетное количество человек. Найти максимальное количество девочек.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
33
всего попыток:
189
Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита, третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона. Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?
Задачу решили:
21
всего попыток:
227
Пусть S - основание системы счисления, в которой существует не менее 5 чисел 1<D1<D2<D3<D4<D5 таких, что остаток от деления любого числа на Di (1<=i<=5) равен остатку от деления суммы его цифр на Di. Найти 5 минимальных различных значений S и ввести их сумму (в 10-ичной системе счисления).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|