Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
339
всего попыток:
593
За столом сидят девочки и мальчики, а на блюде перед ними — 31 булочка. Не все ребята знакомы. Сначала каждая девочка берёт с блюда и раздаёт по булочке каждому незнакомому мальчику, затем каждый мальчик берёт с блюда и раздаёт по булочке каждой знакомой девочке, и на блюде остаётся только 1 булочка. Девочек — 6. А сколько мальчиков?
(Задача моего школьного учителя математики.)
Задачу решили:
47
всего попыток:
101
В натуральном числе поменяли местами некоторые цифры, стоящие в четных позициях, не тронув цифры в нечетных позициях. Пусть C - сумма цифр разности исходного и полученного чисел и 0<=C<=40. Укажите сумму всех возможных значений C.
Задачу решили:
29
всего попыток:
192
Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.
Задачу решили:
52
всего попыток:
72
В натуральном числе W все N цифр различны и расположены в порядке убывания. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1419. Найти все такие числа W и ввести их сумму.
Задачу решили:
71
всего попыток:
105
Числовой ребус ОСЕНЬ - ЗИМА = ВЕСНА (как обычно, разные буквы обозначают разные цифры) имеет много решений, поэтому будем рассматривать только те из них, в которых Ь=0 (мягкий знак обозначает нуль). Найдите максимальное значение слова ВЕСНА.
Задачу решили:
45
всего попыток:
166
В натуральном числе W все N цифр различны. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1353. Определить все возможные значения N, для которых такие числа существуют, и ввести их сумму.
Задачу решили:
41
всего попыток:
113
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько существует различных отрезков целочисленной длины с концами в узлах доски? (Поворачивать доску нельзя, т.е. для доски 1х1 ответ - 4.)
Задачу решили:
118
всего попыток:
283
30 школьников выстроили в строй друг за другом. Никакие 2 девочки не стоят через нечетное количество человек. Найти максимальное количество девочек.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|