Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
45
всего попыток:
66
Отрезок, соединящий вершину треугольника с точкой, делящий противоположную точку в отношении 1:2, назовем тридианой. В треугольнике проведены все тридианы. Найдите отношение площади треугольника к площади шестиугольника, ограниченного тридианами.
Задачу решили:
42
всего попыток:
48
В выпуклом девятиугольнике проведены все диагонали. Углы при каждой вершине закрасили в два цвета - черный и белый, через один, начиная всегда с черного. Найдите в градусах сумму всех "черных" углов.
Задачу решили:
57
всего попыток:
75
Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.
Задачу решили:
35
всего попыток:
42
Фигура "Вертушка" состоит из квадрата и четырех его половинок. На рисунке слева приведено разрезание вертушки на пять частей, на рисунке справа показано, как из этих частей сложить квадрат. Найдите в градусах величину острого угла с вершиной в точке А.
Задачу решили:
47
всего попыток:
80
Сколько квадратов со стороной 4 можно поместить без наложений в равносторонний треугольник со стороной 13?
Задачу решили:
49
всего попыток:
54
Вершины трех квадратов ОА1В1С1, ОА2В2С2 и ОА3В3С3 обозначены по часовой стрелке (см. рис). Найдите площадь треугольника В1В2В3, если площадь треугольника А1А2А3 равна 21.
Задачу решили:
48
всего попыток:
63
Трехзначное число равно сумме его первой цифры, квадрата второй цифры и куба третьей цифры. Найдите все трехзначные числа, обладающие таким свойством. В ответе укажите их сумму.
Задачу решили:
37
всего попыток:
53
Плоская металлическая фигура имеет форму трапеции. Докажите, что её центр тяжести лежит на отрезке, соединяющем середины оснований трапеции. Выясните, в каком отношении (меньшее число к большему) центр тяжести трапеции делит этот отрезок, если основания трапеции равны 1 и 2.
Задачу решили:
19
всего попыток:
36
Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?
Задачу решили:
26
всего попыток:
46
Правильный шестиугольник со стороной 6, разбит на единичные треугольники, и отмечены вершины всех единичных треугольников. Найти число всех правильных шестиугольников, которые можно построить на заданных точках. Три из них изображены на рисунке.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|