Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
20
Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? Светлая память Анне Николаевне Андреевой, учителю математики и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.
Задачу решили:
20
всего попыток:
25
Натуральное число делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.
Задачу решили:
17
всего попыток:
24
Круги радиуса 1 наложены друг на друга так, что их границы образуют квадратную кружевную салфетку, изображенную на рисунке, причем центры кругов расположены в узлах квадратной решетки. Найдите площадь фигуры, являющейся объединением 322 таких кругов. В ответе укажите целую часть этой площади (антье).
Задачу решили:
20
всего попыток:
25
Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.
Задачу решили:
12
всего попыток:
68
Известная головоломка «Змейка Рубика» содержит 24 треугольных призмы. Соседние призмы шарнирно соединены боковыми квадратными гранями и могут поворачиваться на угол кратный 90°. Благодаря этому можно поворачивать не только отдельно взятую призму, но и блок, состоящий из нескольких призм змейки. За сколько поворотов на 180° из фигуры «Собака», сложенную из змейки, можно получить фигуру «Параллелепипед», изображенные на рисунке?
Задачу решили:
12
всего попыток:
17
На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности. Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность 1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.
Задачу решили:
11
всего попыток:
35
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
15
всего попыток:
19
В правильной треугольной пирамиде SABC с основанием ABC точки M и K – середины рёбер AB и SC соответственно, а точки N и L отмечены на рёбрах SA и BC соответственно так, что отрезки MK и NL пересекаются, а |AN|=4|NS|. Найдите отношение |CL|:|LB|.
(Задача из реального теста ЕГЭ 2024.)
Задачу решили:
16
всего попыток:
21
На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые? Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|