Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
23
всего попыток:
36
На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино. Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются. В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.
Задачу решили:
35
всего попыток:
63
На листках отрывного календаря на год написаны числа, соответствующие датам каждого месяца. Какое наименьшее количество листков нужно оторвать так, чтобы на оставшихся листках не нашлось двух чисел, одно их которых в два раза больше другого? Уточнение: листки календаря можно вырывать в любом порядке.
Задачу решили:
28
всего попыток:
60
В кружках фигуры расставлены числа от 1 до 13. Переставьте несколько чисел так, чтобы суммы четырех чисел, расположенных в кружках-вершинах всех квадратов (убедитесь, что их 11), были равными. В ответе укажите наименьшее количество переставленных чисел.
Задачу решили:
26
всего попыток:
45
Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой у=2020-х2 и осью Ох?
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Задачу решили:
39
всего попыток:
49
На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье). Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами. В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами.
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Задачу решили:
26
всего попыток:
118
На каждой ветви графика уравнения |xy|=k взято по одной точке A, B, C и D так, что получился квадрат ABCD, со стороной k и имеющий с графиком общими точками только вершины. Найдите наибольшую площадь такого квадрата.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|