![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
13
всего попыток:
16
Два неперекрывающихся квадрата со сторонами a и b (a≠b) имеют общую вершину O. У каждого из них по две вершины лежат на окружности, а через A и B обозначены оставшиеся две вершины (см. рисунок). Найдите величину угла AOB в градусах, если он острый. ![]()
Задачу решили:
14
всего попыток:
17
На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, … Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, … Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе. ![]()
Задачу решили:
20
всего попыток:
25
Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе. ![]()
Задачу решили:
12
всего попыток:
17
На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности. Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность 1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку. ![]()
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника. ![]()
Задачу решили:
27
всего попыток:
36
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D. ![]()
Задачу решили:
20
всего попыток:
35
Рассмотрим бесконечное множество ромбов со стороной a и углом a°. Какое наибольшее целое значение может принимать площадь ромба из этого множества? ![]()
Задачу решили:
17
всего попыток:
32
В каждой клетке доски 2х200 лежит по рублевой монете. Даша и Соня играют, делая ходы по очереди, начинает Даша. За один ход можно выбрать любую монету и передвинуть её: Даша двигает монету на соседнюю по диагонали клетку, Соня – на соседнюю по стороне. Если две монеты оказываются в одной клетке, одна из них тут же снимается с доски и достается Соне. Соня может остановить игру в любой момент и забрать все полученные деньги. Найдите, какой наибольший выигрыш она может получить, как бы ни играла Даша. ![]()
Задачу решили:
15
всего попыток:
20
Окружность проходит через вершины B и C параллелограмма ABCD и касается его высоты AH, проведенной к стороне CD, в точке K. KF – это перпендикуляр, проведенный из точки K к прямой BC. Длины отрезков CH, HD и KF – последовательные натуральные числа, расположенные в возрастающем порядке. Найдите длину стороны АВ параллелограмма ABCD. ![]()
Задачу решили:
12
всего попыток:
20
В правильном пятиугольнике отмечены середины сторон и проведены десять отрезков так, как на рисунке. Найти отношение площадей внутреннего десятиугольника и исходного пятиугольника. В ответе укажите десятичную дробь с точностью до тысячных долей, в качестве десятичного разделителя используйте запятую.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|