Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
60
В числовом ребусе ХРЮ*ХРЮ=СВИНЬЯ одинаковые буквы заменить одинаковыми цифрами от 1 до 9, а разные буквы - разными цифрами, так, чтобы получилось верное равенство. Чему равна сумма всех возможных значений числа ХРЮ?
Задачу решили:
46
всего попыток:
53
Любитель математики и Абхазии придумал числовой ребус
Задачу решили:
40
всего попыток:
64
Одинаковые буквы означают одинаковые цифры, разные буквы - разные цифры. Найти ЛЕБЕДЬ.
Задачу решили:
24
всего попыток:
39
В числовом ребусе ДЕНЬ+ЧИСЛА+ПИ=31420 одинаковым буквам соответствуют одинаковые цифры, разным - разные. Сколько значений у ЧИСЛА?
Задачу решили:
31
всего попыток:
80
Одинокий тополь в Калмыкии, а также шестилепестковые тюльпаны являются символами Республики. В числовом ребусе
Задачу решили:
27
всего попыток:
38
Чему равна наибольшая разность двух десятизначных чисел кратных 17 с различными цифрами в десятичной системе?
Задачу решили:
37
всего попыток:
49
В числовом ребусе
Задачу решили:
31
всего попыток:
38
Дату рождения Николая Ивановича - любителя головоломок, учителя математики с 45-летним стажем, родившегося во второй половине 20-го века, его ученики зашифровали пятизначными простыми числами из разных цифр: ММДГГ, ДММГГ, ГГММД. Когда же родился Николай Иванович? В качестве ответа введите число, соответствующее ММДГГ.
Задачу решили:
36
всего попыток:
46
Юра придумал для сестёр ребус Катя считает, что сумма М+А+Р+Т может равняться 20, а Настя утверждает, что эта сумма не может равняться 21. Кто из сестёр прав? Ответ запишите в виде кода из двух цифр 0, 1 без пробелов и знаков. На первом месте истинность утверждения Кати. Например, ответ 10 соответствует: Катя права, Настя неправа.
Задачу решили:
25
всего попыток:
48
Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны. А) Могли ли все рейтинги быть простыми числами? Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов? В) Какова минимальная сумма третьего и четвёртого по величине рейтингов? В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов. Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|