img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 20
всего попыток: 100
Задача опубликована: 09.08.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Концы ломаной из двух звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 1.

Шестой шестиугольник

Это первый целочисленный шестиугольник. Концы  ломаной из трёх звеньев совпадают с серединами  противоположных сторон правильного шестиугольника со стороной 2. Это второй целочисленный шестиугольник (смотрите рисунок). Сколько звеньев у ломаной, соединяющей середины противоположных сторон шестого по размерам правильного целочисленного  шестиугольника? Ломаная строится как змейка: первое звено равно 1, каждое последующее на 1 больше предыдущего; угол межу соседними звеньями равен Pi/3.

Задачу решили: 22
всего попыток: 24
Задача опубликована: 06.04.22 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100

В правильной треугольной призме ABCA1B1C1 на ребрах  AC и  A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.

Задачу решили: 20
всего попыток: 23
Задача опубликована: 01.02.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Параллелограмм разбивается на четыре треугольника с целочисленными площадями так, как показано на рисунке.

Шестой по счёту параллелограмм

Найти площадь внутреннего треугольника шестого по счёту по величине площади параллелограмма, для которого выполнятся эти условия, считая первым параллелограмм с площадями треугольников 24,25,26,55. 

Задачу решили: 12
всего попыток: 14
Задача опубликована: 03.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника

Сколько существует таких квадратов с целочисленной стороной?

Задачу решили: 9
всего попыток: 12
Задача опубликована: 08.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника - 2

Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.

Задачу решили: 14
всего попыток: 21
Задача опубликована: 17.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Lec

Квадрат разделён отрезками на четыре треугольника целочисленной площади.

Квадрат и четыре треугольника - 3

Площади трех  цветных треугольников, кроме белого, – соседние члены арифметической прогрессии с разностью 1.  Сколько существует таких квадратов  с целочисленной стороной?  

Задачу решили: 14
всего попыток: 17
Задача опубликована: 28.10.24 08:00
Прислал: DOMASH img
Источник: По мотивам задачи №2709
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Два эллипса каждый с минимальной суммой натуральных a и b (a > b) заданы в канонической форме: 

x2/a2 + y2/b2 =  1. На одном лежат ровно 36 точек с целочисленными координатами, а на другом ровно 28 точек с целочисленными координатами. Найти отношение площадей эллипсов меньшей к большей.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.