img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 305
всего попыток: 425
Задача опубликована: 21.05.09 19:56
Прислала: xyz img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: 34

На складе было 17 чугунных чушек весом 5, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 27, 29, 30, 33 и 35 кг. Сначала со склада забрали две чушки. Затем вывезли ещё несколько чушек, вместе весивших в три раза больше, чем две первых. В третий раз вывезли уже в пять раз больше, чем в первый раз (по весу). После этого осталась одна чушка. Сколько килограммов она весит?

Задачу решили: 244
всего попыток: 281
Задача опубликована: 26.06.09 13:51
Прислала: xyz img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: lexa (Алексей Голубинцев)

Найти все трёхзначные числа, равные сумме факториалов своих цифр (k! — читается "k факториал" — это произведение всех натуральных чисел от 1 до k). В ответе укажите сумму всех найденных чисел.

Задачу решили: 194
всего попыток: 292
Задача опубликована: 22.07.09 00:40
Прислала: xyz img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)

+ 96
  
Задачу решили: 333
всего попыток: 539
Задача опубликована: 11.01.10 21:15
Прислала: xyz img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

В саду растут пять яблонь в ряд: А, Б, В, Г, Д. Под одной из них зарыт клад, который можно обнаружить под 2010-ой яблоней, если отсчитывать их поочерёдно то слева направо, то справа налево: А-Б-В-Г-Д-Г-В-Б-А-Б-В-Г-Д-Г-В-Б-А-... (А – первая, Б – вторая и т. д.). Под какой именно яблоней — А, Б, В, Г или Д — зарыт клад?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.