img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout добавил решение задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 65
всего попыток: 121
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 75
всего попыток: 113
Задача опубликована: 18.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.

Задачу решили: 38
всего попыток: 295
Задача опубликована: 23.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.

Задачу решили: 33
всего попыток: 52
Задача опубликована: 27.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Найдите количество взаимно-однозначных отображенийf\colon \{1,2,\ldots,8\} \to \{1,2,\ldots,8\}, для которых выполняется ровно одно из условий f(i) > f(i + 1) (1 \le i \le 7).

Задачу решили: 48
всего попыток: 355
Задача опубликована: 22.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.

Задачу решили: 52
всего попыток: 157
Задача опубликована: 03.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для натурального числа k обозначим

a_k = \cfrac{361984!}{k!(361984 - k)!}. 

Найдите наибольший общий делитель чисел a_1, a_3, a_5, \ldots, a_{361983}.

Задачу решили: 48
всего попыток: 238
Задача опубликована: 10.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.

Задачу решили: 55
всего попыток: 67
Задача опубликована: 19.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Пусть t_1, t_2, \ldots, t_{1004} --- все натуральные числа, меньшие 2012 и взаимно простые с 2012. Найдите значение суммы дробных частей \sum \limits_{i = 1} ^{1004} \biggl\{\cfrac{523t_i}{2012}\biggr\}. (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)

Задачу решили: 43
всего попыток: 281
Задача опубликована: 03.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Angelina

Пусть f(x) = x^2 -10x + \frac{p}{2}. Найдите такое натуральное p, что уравнение f \circ f \circ f (x) = f(x) имеет ровно 4 различных действительных решения.

Задачу решили: 65
всего попыток: 105
Задача опубликована: 19.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Для натуральных чисел a, b, c справедливо равенство


\cfrac{a^3}{(b + 3)(c + 3)} + 
\cfrac{b^3}{(c + 3)(a + 3)} + 
\cfrac{c^3}{(a + 3)(b + 3)} = 7.

 

Найдите значение a + b + c.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.