Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
105
Для натуральных чисел a, b, c справедливо равенство
Найдите значение a + b + c.
Задачу решили:
51
всего попыток:
123
Найдите наименьшее натуральное m, для которого следующее выражение является целым числом:
Задачу решили:
46
всего попыток:
61
Последовательность целых чисел такова, что , , и для некоторого натурального k выполняется Также известно, что последовательность обладает следующим свойством Найдите значение .
Задачу решили:
29
всего попыток:
35
Вне окружности с центром O выбрана точка P. Из точек пересечения прямой PO и окружности , дальнюю от P точку обозначим за A, AP = 200. Через точку P проведена прямая l (не проходящая через O), пересекающая в точках B и C, ближней и дальней от P соответственно. Описанная окружность треугольника ABO пересекается с l в точке , а описанная окружность треугольника ACO пересекается с l в точке , причем E лежит между точками B и C, AD = 250, AE = 90. Найдите радиус окружности .
Задачу решили:
73
всего попыток:
100
В треугольнике ABC провели биссектрису СD. Прямая, параллельная CD и проходящая и через точку B, пересекает продолжение AC в точке E. Известно, что |AD| = 4, |BD| = 6, |BE| = 15. Найдите |BC|2.
Задачу решили:
101
всего попыток:
122
Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.
Задачу решили:
50
всего попыток:
85
Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.
Задачу решили:
62
всего попыток:
108
Для действительных чисел x, y выполнено условие |x + y + 1| + |x + 1| + |y + 3| = 3. Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2. Найдите M + 2m.
Задачу решили:
68
всего попыток:
115
Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.
Задачу решили:
54
всего попыток:
74
Известно, что действительные числа a и b удовлетворяют уравнению
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|