Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
64
В треугольнике ABC известны длины всех его сторон: |AB| = 21, |BC| = 42, |CA| = 35. Из точек B и C опущены высоты BD и CE, F точка пересечения прямых BD и CE. Прямая, проходящая через центр вписанной окружности треугольника ABC и перпендикулярная BC, пересекает биссектрису угла BFC в точке G. Из G на BF опущена высота GH. Найдите |FH|2.
Задачу решили:
34
всего попыток:
62
Сколькими способами можно провести в выпуклом 7-угольнике A1A2...A7 четыре непересекающихся диагонали так, чтобы 7-угольник разбивался ими на 5 треугольников, каждый из которых имеет с 7-угольником хотя бы одну общую сторону?
Задачу решили:
39
всего попыток:
76
В треугольнике ABC точка O - центр описанной окружности, ∠AOB = ∠BOC = 20°. Точки P, Q, R - середины отрезков OA, OB, OC соответственно. Прямые AB и OC пересекаются в точке D. Пусть OD = 4, а площадь пятиугольника ADRQP равна x. Найдите x2.
Задачу решили:
54
всего попыток:
152
Для натурального числа k обозначим
Задачу решили:
25
всего попыток:
304
При каком наименьшем натуральном n в любом наборе из n действительных чисел больших 10, но меньших 2013 заведомо найдется пара a, b, такая что |(a - b) (ab - 100)| < 10ab?
Задачу решили:
27
всего попыток:
218
Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
Задачу решили:
43
всего попыток:
72
Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
Задачу решили:
44
всего попыток:
205
Найдите остаток от деления на 155 следующего выражения:
Задачу решили:
39
всего попыток:
60
Для положительных действительных чисел a и b выполняется условие
Задачу решили:
50
всего попыток:
61
Положительные целые числа x, y удовлетворяют условию y2 = (x2 - 482)(x2 - 552). Найдите остаток от деления x + y на 1000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|