img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 52
Задача опубликована: 27.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Найдите количество взаимно-однозначных отображенийf\colon \{1,2,\ldots,8\} \to \{1,2,\ldots,8\}, для которых выполняется ровно одно из условий f(i) > f(i + 1) (1 \le i \le 7).

Задачу решили: 41
всего попыток: 59
Задача опубликована: 30.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

В последовательности x_1, x_2, \ldots, x_{10} четыре единицы, три двойки и три тройки. Пусть z_1 = x_1 иz_{n+1} = \left(1 + \frac{1}{n}\right)^2 \cdot 
\cfrac{z_n x_{n+1}}{z_n + x_{n + 1}}, \quad n = 1, 2, \ldots, 9.

Найдите наибольшее значение z_{10}.

(Ответ дробный)
Задачу решили: 33
всего попыток: 424
Задача опубликована: 01.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Дано множество X = \{ 1, 2, \ldots, 13 \}. Определим функцию g\colon X \to X следующим образом:
g(x) = 14 - x,\quad x \in X.
Найдите количество функций f\colon X \to X, для которых композиция f \circ f \circ f равна g.

Задачу решили: 65
всего попыток: 176
Задача опубликована: 03.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найдите количество упорядоченных пар целых чисел (x,y), удовлетворяющих условию 
4x^3 - 5x^2y + 10xy^2 + 12y^3 - 108x - 81y = 0,
и таких, что x и y по модулю не превосходят 1000.

Задачу решили: 48
всего попыток: 355
Задача опубликована: 22.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.

Задачу решили: 52
всего попыток: 157
Задача опубликована: 03.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для натурального числа k обозначим

a_k = \cfrac{361984!}{k!(361984 - k)!}. 

Найдите наибольший общий делитель чисел a_1, a_3, a_5, \ldots, a_{361983}.

Задачу решили: 35
всего попыток: 79
Задача опубликована: 07.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: zmerch

В треугольнике ABC

\angle ABC < 90^\circ, \quad AB = 15, \quad BC = 27. 

Через середину M стороны AC провели прямую l перпендикулярно прямой BC. Прямая l пересекает окружность с центром в точке A и проходящую через точку M в точке P(\ne M). Рассмотрим окружность, проходящую через точки B и M, центр O которой лежит с точкой A по разные стороны от прямой BC и находится на расстоянии 3 от BC.

Обозначим пересечение этой окружности с прямой l за Q. Найдите площадь треугольника OPM, если PQ = 30.

Задачу решили: 48
всего попыток: 238
Задача опубликована: 10.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.

Задачу решили: 55
всего попыток: 67
Задача опубликована: 19.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Пусть t_1, t_2, \ldots, t_{1004} --- все натуральные числа, меньшие 2012 и взаимно простые с 2012. Найдите значение суммы дробных частей \sum \limits_{i = 1} ^{1004} \biggl\{\cfrac{523t_i}{2012}\biggr\}. (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)

Задачу решили: 26
всего попыток: 91
Задача опубликована: 24.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Vkorsukov

Описанная окружность O треугольника ABC касается окружности O' в точке A. Пусть прямая AB пересекает окружность O' в точке D(\ne A); прямая BC пересекает окружность O' в точке E, лежащей с точкой C по разные стороны от прямой AD, и точке F. Касательная к окружности O в точке B пересекает отрезок DF в точке K, прямая CD пересекает окружность O' в точке L(\ne D). Найдите величину (в градусах) \angle CAB, если \angle CFA = 38^\circ, \angle DKB = 47^\circ, \angle CLA = 60^\circ.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.