img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 17
Задача опубликована: 02.08.19 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В ряду 111 ... 111 записаны 2018 единиц. Какое наибольшее количество знаков "+" или "-" можно поставить в этом ряду (не более одного знака между каждой группой единиц), чтобы полученное выражение давало в итоге 8102?

Задачу решили: 14
всего попыток: 19
Задача опубликована: 12.10.22 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: solomon

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления.
При этом исходный треугольник оказался разделен на части.

Треугольники в треугольнике - 2

На рисунке приведен (для иллюстрации) равносторонний треугольник со стороной 7, в который вписаны 6 меньших равносторонних треугольников.

Обозначим: Tk – количество внутренних точек пересечения отрезков (сторон вписанных треугольников), через которые проходят ровно k отрезков. Найдите количество частей, на которые разделён исходный треугольник, если известно, что T2 = 2996676, T3 = 72 и T4 = 18.

Задачу решили: 12
всего попыток: 13
Задача опубликована: 03.06.24 08:00
Прислал: Vkorsukov img
Источник: Подражение задаче 2643
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Kf_GoldFish

Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.