img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 24
всего попыток: 344
Задача опубликована: 04.05.15 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника.  Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?

Задачу решили: 27
всего попыток: 276
Задача опубликована: 10.02.17 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Дано, выпуклый четырёхугольник ABCD имеет целочисленную площадь, а длины его сторон AB, BC, CD, DA равны 11, 5, 10, 14, соответственно. Сколько различных значений может принимать площадь таких четырёхугольников?

Задачу решили: 52
всего попыток: 66
Задача опубликована: 30.04.18 08:00
Прислал: Vkorsukov img
Источник: Euclidea
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке.

fb16.png

Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.

Задачу решили: 23
всего попыток: 89
Задача опубликована: 19.06.20 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Внутри равностороннего треугольника, включая и его стороны, выбрана произвольная точка. Из отрезков равных расстоянию от этой точки до вершин треугольника составляется новый треугольник. Сколько различных целочисленных значений в градусах может принимать наибольший угол нового треугольника?

Задачу решили: 12
всего попыток: 13
Задача опубликована: 03.06.24 08:00
Прислал: Vkorsukov img
Источник: Подражение задаче 2643
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Kf_GoldFish

Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.