img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 97
всего попыток: 302
Задача опубликована: 18.08.09 09:50
Прислал: Vkorsukov img
Источник: "Комсомольская правда"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Маршрут автобуса состоит из 12 остановок (включая конечные). Автобус вмещает не более 20 пассажиров. Однажды автобус проехал весь маршрут из конца в конец, останавливаясь на всех остановках. Известно, что не было двух пассажиров, которые вошли, а потом и вышли на одной и той же остановке. Какое наибольшее число пассажиров могло быть перевезено автобусом при этих условиях?

Задачу решили: 54
всего попыток: 103
Задача опубликована: 04.12.09 23:42
Прислал: Vkorsukov img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение  высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.

Задачу решили: 19
всего попыток: 43
Задача опубликована: 16.03.11 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Чевианой называют отрезок соединяющий вершину треугольника с его противоположной стороной или её продолжением. Нас будут интересовать чевианы, которые делят треугольник на два треугольника с равными вписанными окружностями. Найдите площадь треугольника, в котором длины таких чевиан равны: 996, 1490, 2685. Результат округлите до ближайшего целого числа.

Задачу решили: 44
всего попыток: 249
Задача опубликована: 13.07.11 08:00
Прислал: Vkorsukov img
Источник: На основе задач 595 и 603; совместно с volina...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ROMARINA (Lyubov Dudina)

В оранжерее на космической станции в виде прямоугольника 23×31 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 713 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 37
всего попыток: 310
Задача опубликована: 10.08.11 08:00
Прислал: Vkorsukov img
Источник: Задача 607
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В шахматной композиции (задачах) есть раздел  сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций,  полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.

Задачу решили: 52
всего попыток: 359
Задача опубликована: 07.09.11 08:00
Прислал: Vkorsukov img
Источник: Задача 628
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4 и CD=13. Сколько различных целочисленных значений может принимать площадь четырёхугольника ABCD с такими условиями?

Задачу решили: 45
всего попыток: 285
Задача опубликована: 01.05.13 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: nellyk

Вася старается раскрасить клетки квадрата 5х5 так, чтобы в любом его квадрате 3х3 было ровно 4 закрашенных клетки. После успешной раскраски он считает сколько клеток осталось не закрашенными. Сколько различных значений может получить Вася? В качестве ответа введите сумму полученных значений.

 

Задачу решили: 24
всего попыток: 344
Задача опубликована: 04.05.15 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника.  Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?

Задачу решили: 27
всего попыток: 276
Задача опубликована: 10.02.17 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Дано, выпуклый четырёхугольник ABCD имеет целочисленную площадь, а длины его сторон AB, BC, CD, DA равны 11, 5, 10, 14, соответственно. Сколько различных значений может принимать площадь таких четырёхугольников?

Задачу решили: 52
всего попыток: 66
Задача опубликована: 30.04.18 08:00
Прислал: Vkorsukov img
Источник: Euclidea
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке.

fb16.png

Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.